
Tom Coppeto!
Ingenescus!!
March 2014

OSID Specification Request: 5!
Track: Interface!
Status: Accepted! !

!
!

Batch Notifications !
Status
This document is a request for a specification change for review. !

Summary
OSID Providers can notify OSID Consumers of events pertaining to the status of
OsidObjects through OsidReceiver callback interfaces. OSID Consumers process these
events one at a time with no capability for batching events. This document proposes
OsidReceiver changes to improve the efficiency of this callback mechanism.!

Table of Contents

1. Current Specification! 2!..

2. Problem! 4!..
2.1. Batch OsidReceiver Callbacks! 4!...
2.2. Hierarchical Notifications! 4!..
2.3. Subscription and Notification Alignment! 5!..

3. Proposed Changes! 6!..
3.1. Typical Bulk OsidReceiver Callbacks! 6!...
3.2. Hierarchical Notifications! 6!..
3.3. Atypical Notifications! 7!...

4. Impacts! 7!...
4.1. Specification! 7!...
4.2. OSID Consumers! 7!...
4.3. OSID Providers! 8!..

5. Interoperability Considerations! 8!...

6. Proposed Interfaces! 8!..
6.1. Example! 8!..

7. Example Scenario! 9!...

8. Copyright Statement! 10...

Coppeto! � of � ! Accepted1 10

OSR 5 ! Batch Notifications! March 2014

1. Current Specification
OSID Providers can notify OSID Consumers of events pertaining to the status of
OsidObjects through OsidReceivers. An OsidReceiver is a consumer-owned object that
handles the events. OsidReceivers are supplied when launching a notification OsidSession.!

" !

OSID Providers track notification registrations. When an event is triggered, such as the
creation of an OsidObject, OSID Consumers who have registered for the event receive a
callback via their OsidReceivers.!

No information is supplied in the callback other than the Id of the OsidObject. OSID
Consumers have to retrieve the OsidObject for the Id supplied in the callback.!

1 2

registerForNewOsidObjects()

getOsidObjectNotifcationSession(receiver)

callback
stack

3

OsidReceiver

OsidManager

notification
OsidSession

Coppeto! � of � ! Accepted2 10

OSR 5 ! Batch Notifications! March 2014

" !

Notification sessions and the accompanying OsidReceivers break down OsidObject events
along typical create/update/delete boundaries. There are also events for changes in
hierarchies. !

High level filtering can be performed along the major relations of an OsidObject. Detailed
filtering can be performed through the selection of specific OsidCatalogs. The OSIDs do not
suggest where this filtering takes place nor what the nature of the message bus is (i.e.
multicast or unicast). The callback stack can be maintained anywhere along the path.!

The OsidReceiver contains no data other than the identity of the entity to which the event
pertains. These notifications are sent outside the context and security perimeter of the event
trigger. The recipient may have a different authorization, data presentation, or an entirely
separate service endpoint. OsidReceivers are expected to retrieve the OsidObject in response
to create and update notifications. !

The dilemma for an OSID Provider is to produce a scalable and secure solution among
sparse interface touchpoints. !

In the simple case, many OSID Consumers listening for an event results a waterfall of
retrieval requests. It then becomes the responsibility of the OSID Provider to protect itself by
batching events. Considerations for a batch mechanism include throttling and filtering
repetitive events.!

createOsidObject(form)1 getOsidObject(objectId)6 5 newOsidObject(objectId)

lookup
OsidSession OsidReceiveradministrative

OsidSession

2

callback
stackDB

3

event

4

event
handler

Coppeto! � of � ! Accepted3 10

OSR 5 ! Batch Notifications! March 2014

2. Problem

2.1. Batch OsidReceiver Callbacks
In a batch scenario, the OSID Provider may have a queue of events destined for a service
endpoint. The OSID Receiver is limited to notifying the OSID Consumer one at a time.!

2.2. Hierarchical Notifications
The bulk callbacks fall short on the existing OsidReceivers. The existing mechanism
subscribes to notifications relative to a given node, and new or removed ancestors and
descendants of that node are reported. !

If the subscriptions for new ancestors is on node K (diagram below) and node A was added
at a later time, then the notification would be:!

If C and G were added along with K, then the notification might be (this is a vague
interpretation):!

"
These ancestor & descendant notifications are useful for informing changes to certain
hierarchical evaluations, but not enough for tracking the structure of hierarchy. In the above
scenario, we don’t know what the relations are among A, C & G.!

newAncestorRepository(repositoryId, ancestorId);

newAncestorRepository(K, A);

newAncestorRepository(K, A);	
newAncestorRepository(K, C);	
newAncestorRepository(K, G);

A

B C D

E F G H I

J K L

M

Coppeto! � of � ! Accepted4 10

OSR 5 ! Batch Notifications! March 2014

One possibility is to constrain the notifications to parent/child changes.!

In this case, the subscription on ancestors and descendants serve to filter on part of the
hierarchy, up or down, but the notifications are on a series of parent/child changes that can
be reconstructed on the receiving end. The downside is that specific relationships are sent
through the notification bus potentially exposing information based on how specific Ids
relate.!

Another option is to restrict the notification to what changed without conveying specific
relationships.!

The receiver would then retrieve the Nodes for these three Ids to determine what in their
copy of the hierarchy needs updating (and possibly pushing the need for a bulk node
retrieval operation). In this scenario, the receiver maintains the ability to filter notifications
above or below a specific node in the hierarchy. These hierarchies serve the purpose of
federating so it is most often the case one needs all the nodes from a specific node up to its
roots, or all the nodes from a specific node down to its leaves. !

2.3. Subscription and Notification Alignment
There exists only a loose alignment between the registration methods in the notification
OsidSessions and the OsidReceiver callbacks. For example, two subscriptions routes to the
same callback in OsidReceiver:!

Two OsidReceiver implementations, and thus the launch of two notification OsidSessions,
would be required if both events needed to be handled separately. Typically, however, it is
expected that either event results in a retrieval of the Edge to determine the next course of
action.!

On create of a Federateable, the OsidObject must be visible in the hierarchy but it has no
parents or children. The orphan appears as a root until it is explicitly made a child of
another node. The action from moving the node should be to examine the hierarchy to
determine its new position. This can be accomplished by examining the immediate nodes
around it to determine where it fits in. !
If G were inserted:!

newParentRepository(K, G);	
newParentRepository(G, C);	
newParentRepository(C, A);

newRepositoryNodes(G, C, A);

registerForNewEdgesBySourceNode(nodeId);	
registerForNewEdgesByDestinationNode(nodeId);

newEdge(nodeId);

Coppeto! � of � ! Accepted5 10

OSR 5 ! Batch Notifications! March 2014

However, if G and C were added simultaneously, two events would fire. An examination of
G would reveal a node C that is:!
• an orphan because C’s hierarchy update has not been received. This would fix itself when

C’s event arrives.!
• unknown because C’s create event has not arrived. !
Handling asynchronous hierarchy events requires more complexity to maintain proper
synchronization and helps to have a reliable and ordered notification bus.!
The hierarchical events could be reduced to:!

• A new node appeared in the hierarchy that wasn’t there before. It was just created and
likely an orphan. !

• The position of the node changed in the hierarchy because a parent or child was added or
removed from the node. This might trigger change events in the surrounding node !

• The node was removed from the hierarchy altogether. This would create a hole in the
hierarchy that should be “filled in” when change events for the surrounding nodes are
received.!

The new and removed hierarchy events are also triggered from the new and deleted events
on the OsidObject. From an OSID Provider view, these are redundant.!
From an OSID Consumer view, it can perform both tasks if it subscribed to both kinds of
events. If it was only interested in one or there other event, it would subscribe to one or the
other event and gear its OsidReceiver to one or the other case.!
The change case differs because change events are triggered for any update that does not
effect the hierarchy, and vice versa. A separate change node registration and callback should
exist. !

3. Proposed Changes

3.1. Typical Bulk OsidReceiver Callbacks
Change the signature of the OsidReceiver callback methods for new, changed, and delete to
accept an osid.id.IdList. An IdList, as opposed to an array, aligns well with the
getOsidObjectsByIds(idList) lookup method.!

3.2. Hierarchical Notifications
In OsidReceiver, replace the ancestor/descendant callbacks with a single change node
callback.!

newNode(newNodeId) {	
 Node node = hierarchySession.getNodes(newNodeId, 1, 1, true);	
}

changedRepositoryNodes(repositoryIds);

Coppeto! � of � ! Accepted6 10

OSR 5 ! Batch Notifications! March 2014

!
In notification OsidSessions, replace the ancestor/descendant notifications with:!

3.3. Atypical Notifications
There are a bunch of random callbacks that do not conform to the bulk pattern. Examples
are Resource tracking in osid.mapping, thresholds in osid.metering, linked issues in
osid.tracking, in state changes in osid.process. Some (or all) of these are due to the lack of an
entity on which to hang the notification. Many of these pattern deviations will be addressed
in fleshing out the reporting patterns.!

4. Impacts

4.1. Specification
This is a widespread change across all OsidReceivers. A consideration is the limited
existence of notification implementations that may make an interface change at this stage of
release candidate acceptable. Otherwise, these bulk methods would appear as separate
methods OSID Consumers would need to implement.!

4.2. OSID Consumers
OSID Consumers would be required to process an osid.id.Id list instead of operating on one
osid.id.Id at a time. The osid.id.IdList can be fed directly to a corresponding retrieval
method.!

registerForChangedRepositoryHierarchy();	
registerForChangedRepositoryHierarchyForAncestors(repositoryId);	
registerForChangedRepositoryHierarchyForDescendants(repositoryId);

Before

OsidObjectReceiver {	
 newOsidObject(osid.id.Id objectId) {	
 OsidObject object = lookupSession.getOsidObject(objectId);	
 …	
 }	
 …	
}

Coppeto! � of � ! Accepted7 10

OSR 5 ! Batch Notifications! March 2014

Tracking hierarchy changes was never implemented well because there wasn’t enough
information to track the structure.!

4.3. OSID Providers
Impact is limited to wrapping a single Id in an IdList for non-federateable OsidObjects.
Hierarchy change notifications are incompatible.!

5. Interoperability Considerations
The use of an IdList can create an active association between the notifications and retrievals
within the same OSID Provider. !

One benefit is the added flexibility for an OSID Provider to perform some or all filtering
after the notification has been received. While this requires an agreement on the use of the
IdList that may be inappropriate for some OSID Consumers, it may be well suited for OSID
Adapters that must to some additional processing and cache refreshing along the way.!

6. Proposed Interfaces

6.1. Example

After

OsidObjectReceiver {	
 newOsidObjects(osid.id.IdList objectIds) {	
 OsidObjectList objects = lookupSession.getOsidObjects(objectIds);	
 …	
 }	
 …	
}

Interface osid.assessment.BankReceiver

Implements osid.OsidReceiver

Description The bank receiver is the consumer supplied interface for receiving notifications pertaining to new,
updated, or deleted Banks.

Method newBanks
Description The callback for notifications of new banks.
Parameters osid.id.IdList bankIds a list of bank Ids
Compliance mandatory This method must be implemented.
Method changedBanks

Description The callback for notifications of changed banks.
Parameters osid.id.IdList bankIds a list of bank Ids
Compliance mandatory This method must be implemented.
Method deletedBanks

Description The callback for notifications of deleted banks.
Parameters osid.id.IdList bankIds a list of bank Ids
Compliance mandatory This method must be implemented.

Coppeto! � of � ! Accepted8 10

http://osid.org/specifications/osid/OsidReceiver.html
http://osid.org/specifications/osid/id/IdList.html
http://osid.org/specifications/meta/Statements.html
http://osid.org/specifications/osid/id/IdList.html
http://osid.org/specifications/meta/Statements.html
http://osid.org/specifications/osid/id/IdList.html
http://osid.org/specifications/meta/Statements.html

OSR 5 ! Batch Notifications! March 2014

7. Example Scenario
An OSID Provider may wish to hold back notifications, batch them at specific times, or filter
out repeating operations. In these cases, the OSID Consumer can receive a batch of Ids that
are retrieved via a lookup or query OSID Session in bulk. !

This allows OSID Providers to shape the incoming traffic in response to system events or
other batch operations.!

"  

Method changedChildOfBanks
Description The callback for notifications of changes to parents and children of bank hierarchy nodes.
Parameters osid.id.IdList bankIds a list of bank Ids
Compliance mandatory This method must be implemented.

createOsidObject(form)1 getOsidObjects(objectIds)8 7 newOsidObjects(objectIds)

lookup
OsidSession OsidReceiveradministrative

OsidSession

event
handler

2 6

callback
stack

DB
event
filterer

event
scheduler

3

4

5

Coppeto! � of � ! Accepted9 10

http://osid.org/specifications/osid/id/IdList.html
http://osid.org/specifications/meta/Statements.html

OSR 5 ! Batch Notifications! March 2014

8. Copyright Statement
Copyright (C) Ingenescus (2014). All Rights Reserved.!

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included
on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice
or references to the authors, Ingenescus, or other organizations, except
as required to translate it into languages other than English.!

This document and the information contained herein is provided on an "AS
IS" basis and Ingenescus and the authors DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.!

Coppeto! � of � ! Accepted10 10

